Immobilized IL-8 triggers progressive activation of neutrophils rolling in vitro on P-selectin and intercellular adhesion molecule-1.
نویسندگان
چکیده
The chemokine IL-8 is found on the luminal side of vascular endothelial cells, where it is postulated to be immobilized during inflammation. In this study, we observed that immobilized IL-8 can stimulate neutrophils to firmly adhere to a substrate containing ICAM-1 in a static adhesion assay. Soluble IL-8 was then perfused over neutrophils rolling on P-selectin (P-sel) and ICAM-1, confirming that IL-8 in solution can quickly cause rolling neutrophils to arrest. To mimic a blood vessel wall with IL-8 expressed on the luminal surface of endothelial cells, IL-8 was immobilized along with P-sel and ICAM-1 at defined site densities to a surface. Neutrophils rolled an average of 200 microm on surfaces of P-sel, ICAM-1, and IL-8 before firmly adhering through ICAM-1-beta(2) integrin interactions at 2 dynes/cm(2) wall shear stress. Increasing the density of IL-8 from 60 to 350 sites/microm(2) on the surface decreased by 50% the average distance and time the neutrophils rolled before becoming firmly adherent. Temporal dynamics of ICAM-1-beta(2) integrin interactions of rolling neutrophils following IL-8 exposure suggest the existence of two classes of beta(2) integrin-ICAM-1 interactions, a low avidity interaction with a 65% increase in pause times as compared with P-sel-P-sel glycoprotein ligand-1 interactions, and a high avidity interaction with pause times 400% greater than the selectin interactions. Based on the proportionality between IL-8 site density and time to arrest, it appears that neutrophils may need to sample a critical number of IL-8 molecules presented by the vessel wall before forming a sufficient number of high avidity beta(2) integrin bonds for firm adhesion.
منابع مشابه
Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils.
Human blood neutrophils rolling on E- or P-selectin reduced their rolling velocity when intercellular adhesion molecule (ICAM)-1 was available. Similar to mouse neutrophils, this was dependent on P-selectin glycoprotein ligand 1 (PSGL1), alpha(L)beta(2) integrin, the Src family tyrosine kinase FGR and spleen tyrosine kinase SYK. Blocking phospholipase C or p38 MAP kinase attenuated, but did not...
متن کاملSeparable requirements for cytoplasmic domain of PSGL-1 in leukocyte rolling and signaling under flow.
In inflamed venules, leukocytes use P-selectin glycoprotein ligand-1 (PSGL-1) to roll on P-selectin and E-selectin and to activate integrin alphaLbeta2 (lymphocyte function-associated antigen-1, LFA-1) to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Studies in cell lines have suggested that PSGL-1 requires its cytoplasmic domain to localize in membrane domains, to support rolling...
متن کاملVASCULAR BIOLOGY E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin L 2-mediated slow leukocyte rolling
In inflamed venules, neutrophils rolling on E-selectin induce integrin L 2dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor(FcR ), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1...
متن کاملEstimating the efficiency of cell capture and arrest in flow chambers: study of neutrophil binding via E-selectin and ICAM-1.
A mathematical model was developed to quantify the efficiency of cell-substrate attachment in the parallel-plate flow chamber. The model decouples the physical features of the system that affect cell-substrate collision rates from the biological features that influence cellular adhesivity. Thus, experimental data on cell rolling and adhesion density are converted into "frequency" parameters tha...
متن کاملSelectin-mediated rolling of neutrophils on immobilized platelets.
Interaction between neutrophils and platelets at the site of vascular damage or in ischaemic tissue may promote thrombosis and/or vascular occlusion. To study this interaction, we have developed a novel technique that allows visualization of adhesion of flowing neutrophils to immobilized, activated platelets. The total number of adherent neutrophils decreased with increasing wall shear stress i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 167 7 شماره
صفحات -
تاریخ انتشار 2001